

Цифровые технологии на промышленном производстве ООО «ЗапСибНефтехим». Реализация Цифровых решений Индустрия 4.0

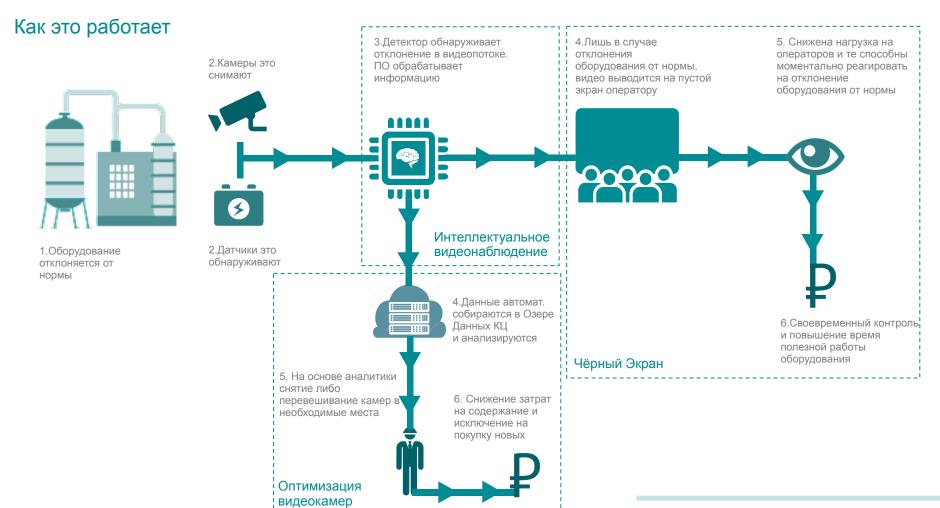
Менеджер управления Цифровые технологии ООО «ЗапСибНефтехим» Дерюгин Ю.Н.

Три направления деятельности

1 Интеллектуальное видеонаблюдение

Обнаружить в видеопотоке с камер отклонения от допустимых параметров работы оборудования, автоматически посредством машинного обучения

2 Чёрный Экран


Вывести видео на экран оператору лишь в случае отклонения.

Это обеспечивает моментальное реагирование и увеличение времени полезной работы оборудования

3 Оптимизация видеокамер

Аналитически выявить, затем снять или перевесить неинформативные камеры, сократив затраты на обслуживание и исключив закупку новых

Формирование бизнес-заказчика по инициативам ИВН/ЧЭ 2021

►Начало этапа IV в 2021

ФЭП.Тех

Кейсы, сформированные в результате фрейминга на технологических процессах

ФЭП.РиН

Кейсы, сформированные в результате фрейминга по контролю! надежности

ОТиПБ

Кейсы, сформированные в результате фрейминга по мониторингу безопасности

Камеры СХ общего назначения

На момент начала этапа камеры не могут быть отнесены к конкретной функции (~2000 шт)

СД.Связь

ЗСК / Техзрение в потоке гранул ТЭП СНХ / Приемка реакторов после чистки СК / Замена шнековых транспортеров на иброконвейеры на 7, 8 тл КП / Техзрение на металлизаторе для онтроля покрытия СК / Тепло и визуальный контроль олимеризаторов Лониторинг хода выполнения ремонтных СНХ / Приемка реакторов после чистки 1ониторинг работы погрузчиков на кладах

онтроль горения факелов

3СНХ, 224 шт.

СИБТ, 149 шт.

50%

100%

Лониторинг доступа на электроподстанции

ВСК, 415 шт.

80%

ТНХ, 77 шт.

100%

эниторинг работ со шкафами при остановленном оборудовании

БКП, 150 шт.

СХП, 485 шт.

30%

60%

І. Установка и подключение новых камер

- Закупка оборудования
- ΠИР / CMP / ПНР
- Настройка детекторов видеонаблюдения
- Подключение устройств к системе ТВН предприятия
- Эксплуатация
- II. Сложные детекторы на существующих и новых камерах
- Фрейминг функциональности
- Разработка
- DEV / TEST / PROD
- Эксплуатация

Текущие работы по сплошному зачернению:

- Включение детекторов
- Выведение на дэшборд
- Анализ сработок
- Классификация кейсов
- Выявлены камеры, которые не генерируют сработки. По согласованию с производством и связью мог∨т быть демонтированы и переисользованы для нужд других предприятий / проектов.

СТГ, 84 шт.

СК-СНХ, 147шт.

50%

50%

• Экономия на инвестиционных потоках и на технической поддержке.

Новые

кейсы

Эффе

кты

Эффе

кты

Безоп

асн

ЧЭ: Задачи сплошного зачернения экранов

Было

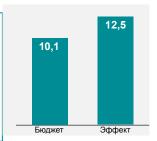
Стало (штатное состояние)

Стало (сработали детекторы)

MAINTENANCE 2 FIX: Проекты ИВН 2020

Контроль уровней масла, жидкостей (Лубрикаторы ТНХ)

Проблема:


Вероятность останова линий ППЭ по отказу блок-цилиндров (блокировке) вследствие низкого уровня масла в лубрикаторных секция

Решение:

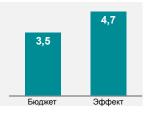
Контроль за уровнями масла в лубрикаторных секциях реализован на основе системы интеллектуального видеонаблюдения

Эффект:

Митигация вероятности наступление УМД, сокращение рисков простоев в размере 8 часов

Детекция агломератов на виброситах (ПП 3СНХ, СА-17 СИБТ, ПП ТНХ)

Проблема:


Нет постоянного контроля за состоянием нарезки гранулята и заполнением вибросит, что приводит к риску останова

Решение:

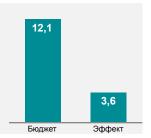
Детектирование заполнения вибросита при помощи ИВН Сигнализация/оповещение в случае выявления отклонений

Эффект:

Оперативное оповещение и реагирование при заполнении вибросит Митигация риска останова экструдера по заполнению вибросит

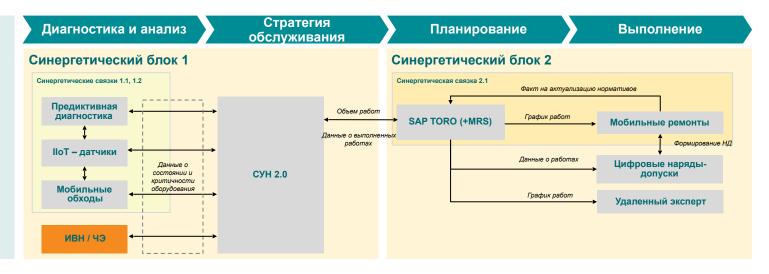
Детекция забивок на этапе сушки (ТЭП-50 ВСК)

Проблема:


Риск забивки, останова оборудования, потери ВПР в связи с забивкой Трудоемкий ручной процесс контроля забивок

Решение:

Установить модуль распознавания процессов и надежности работы оборудования, поведение крошки каучука в дробилке, полимеризации


Эффект:

Дополнительный выпуск СБС ТЭП: 60 тонн

MAINTENANCE 2 FIX: Место в процессе M2F

Упрощенная схема взаимодействия внедряемых инструментов и практик в процессе ТОиР



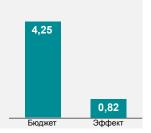
За счет непрерывного online визуального мониторинга позиций оборудования при помощи ИВН там, где такая возможность отсутствует при помощи датчиков и иных штатных средств – достигается сокращение вероятности остановов по различным причинам (забивки, низкий уровень масла и тд.)

Таким образом, повышается ВПР данный позиций оборудования.

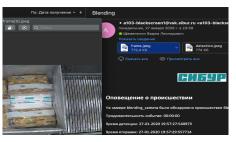
PLAN 2 PRODUCE: Проекты ИВН 2020

Контроль качества и размера крошки (Фотосепарато ры ВСК, Тех. Зрение)

Проблема:


Образование несоответствующей продукции по причине неоднородности крошки (ВСК / ПБК ТЛ №6)

Решение:


Установить техническое зрения с программным модулем распознавания продуктового потока и неоднородности крошки

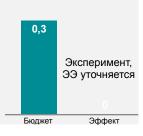
Эффект:

Снижение доли несоответствующей продукции на 5%, дополнительный выпуск продукции СКД-НД 38 т/год

Мониторинг пересортицы (брикеты каучука ВСК)

Проблема:

Нет постоянного контроля (в режиме on-line) за процессом заполнения упаковочных ящиков брикетами каучука.


Решение:

Модель детектирования пересортицы брикетов каучука.

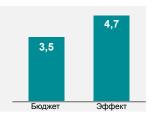
Сигнализация/оповещение в случае выявления отклонений

Эффект:

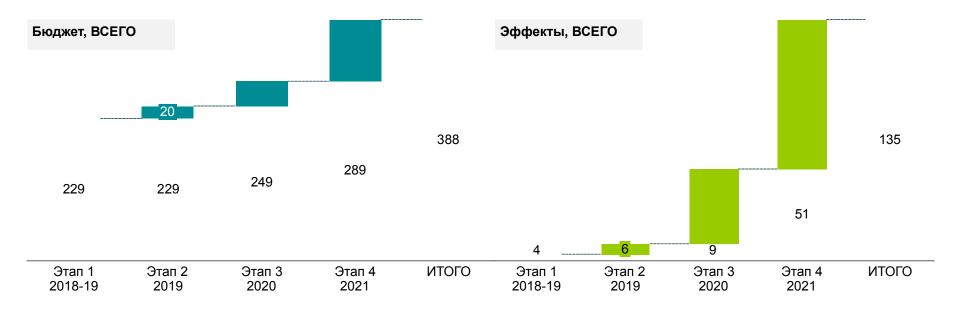
Своевременное устранение пересортицы и предотвращения претензий от клиентов.

Детекция агломератов на виброситах (ПП 3СНХ, СА-17 СИБТ, ПП ТНХ)

Проблема:


Нет постоянного контроля за состоянием нарезки гранулята и заполнением вибросит, что приводит к выпуску некондиции

Решение:


Детектирование заполнения вибросита при помощи ИВН Сигнализация/оповещение в случае выявления отклонений

Эффект:

Оперативное оповещение и реагирование при заполнении вибросит Производство целевой продукции

Ключевые показатели Программы ИВН/ЧЭ 2021: Совокупный БЮДЖЕТ vs ЭФФЕКТ

Соотносимый эффект позволяет достичь окупаемости программы с учетом всех затрат (в т.ч. Инвестиционных) менее чем за 4 года

Программа ІІоТ – это ...

Внедрение бизнес-кейсов на предприятиях в периметре тиража

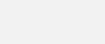
Бизнес-кейсы АПК ПоТ, внедряемые на предприятиях с целью получения экономического эффекта

1. Повышение надежности оборудования, Синергия с НиР и использование РОП для формирования эффектов

Датчики IIoT устанавливаются с учетом Реестров критичности, а при расчете эффектов учитывается влияние на вероятности и потенциальные потери

2. Синергия с инструментам и продвинутой аналитики

Датчики IIoT являются дополнительными источниками данных для ЭКОНС, Предиктивной диагностики и Моделей-советчиков и устанавливаются с учетом тиража этих продуктов


Влияние на индексы производства за счет анализа данных с датчиков lloT

При установке датчиков на контрольные точки по ходу движения обходчиков – маршрут можно оптимизировать, а трудозатраты на ручной контроль - сократить

маршрутов обходов и

процессов контроля

3. Оптимизация

4. Замена дорогостоящих проводных датчиков – датчиками собственной разработки

Поиск среди планов по оснащению датчиками вариантов оптимизации затрат на закупку

Техническая разработка аппаратно-программного комплекса IIoT

Сбор данных с датчиков

 Датчики температуры взрывозащищенные собственной разработки

 Датчики температуры без взрывозащиты от вендора;

 Датчики вибрации и температуры во взрывозащищенном исполнении со спектральным анализом сигналов от вендора

- Датчики инфракрасные

— Др.

Передача по сети связи

Локальное покрытие сетью LoRaWAN / WiFi / др. для обеспечения связью перспективных кейсов

Синхронизация внедрения датчиков и графика разворачивания сети

Обработка и хранение

SIBUR IIoT Platform

В целевой архитектуре данные затем передаются в «Озеро данных», где могут быть использованы различными инструментами:

• ЭКОНС • Предиктив • Tableau • Советчики •


Выведение инфо в интерфейсе

SIBUR IIoT Platform содержит:

- -Динамика контролируемых показателей
- -Пересечение пороговых значений;
- Основные данные о работе датчиков
 Платформа также содержит:
- Редактор мнемосхем, позволяющий наносить на чертежи датчики;
- -Администрирование датчиков и др.

1) Типовые задачи, решаемые проектом IIoT

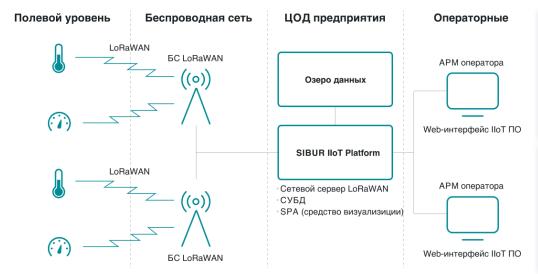
- Необходим контроль вибрации / температуры по множеству точек.
 Вероятность несвоевременного обнаружения отклонения (превышение уровня вибрации . температуры) при замере в ручную
- Замена проводных и дорогостоящих беспроводных датчиков дешевыми беспроводными датчиками собственной разработки (на этапе закупки / проекта)
- Синергетические эффекты от интеграции IIoT с другими инструментами (ЭКОНС, АРС, Предиктивная аналитика и др.)
- Высокая трудоемкость процессов ручного контроля параметров
- Риск УМД в результате основа и/или снижения производи-тельности
- Бумажная регистрация внесённых в настройки изменений
- Отсутствие контроля параметров в режиме реального времени

Решения

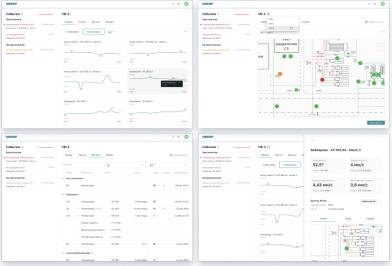
- Тавтоматизировать процесс контроля уровня вибрации / температуры оборудования
- Хранить историю показаний датчиков с возможностью выдачи через АРІ для анализа и поиска проблем;
- Своевременно обнаружить отклонения от заданных параметров технологического процесса (изменение уровня вибрации);
- Митигировать риски / сократить время простоя и/или снижения производительности линий, по причине выхода из строя оборудования (своевременное включение резерва)
- Интерфейс программной платформы системы позволяет обеспечить эффективный процесс контроля. Операторы получают необходимые показания с датчиков. Контролируют состояние оборудования дистанционно. Получают уведомления.
- Осуществляется автоматическая передача данных с датчиков в системы («Озеро данных» УКД) в соответствии с целевой архитектурой интеграции

3) Обеспечение приживаемости

- Обучить ИТР и рабочий персонал работе с данными с датчиков и работе с пользовательским интерфейском программной платформы IIoT
- Определить процессы к исключению после внедрения беспроводных систем контроля: дополнительные обходы, ручные контроли
- Мониторить комплексный показатель приживаемости и поддерживать на уровне более 95%


. = $\frac{Kon - во Реакций оператора}{Kon - во срабатываний датчиков} \times 100 = 95\% +$

Решения IIoT оказывают влияние на EBITDA компании за счет следующих рычагов


	Операционный рычаг	Кейсы применения	Цифровые продукты
1	Влияние на ИППТ	Контроль температурыКонтроль оборудования 3,4 групп критичности	Беспроводные датчики собственной разработкиБеспроводные датчики ВЕГА ТД-11
2	Влияние на УМД	 Предиктивная диагностика оборудования 1,2 групп критичности Контактные соединения на трансформаторных подстанциях Контроль целостности фланцевых соединений 	 Система вибродиагностики OneProd Умная прокладка уплотнительных соединений Контроль контактных соединений на трансформаторных подстанциях Датчики температуры RFSense Термоактивируемые газовыделяющие наклейки Инфракрасные датчики МИКРАН
3	Влияние на ИЭ / ИТЭ	Контроль температуры в чаше градирниПовышение эффективности водооборотных систем	■ Система вибродиагностики OneProd ■
4	Сокращение затрат целевых программ ПОФ	 Сокращение затрат по доавтоматизации проводными датчиками за счет применения беспроводных технологий 	 Беспроводные датчики собственной разработки

Целевая архитектура и функциональность IIoT-Платформы предполагает передачу данных

Целевая архитектура

Функциональность

SIBUR IIoT Platform получает данные с датчиков и позволяет их обрабатывать, визуализировать и принимать решения.

В целевой архитектуре данные затем передаются в «Озеро данных», где могут быть использованы инструментами продвинутой аналитики:

• ЭКОНС • Предиктивная диагностика • Tableau • APC • др.

Функциональность SIBUR IIoT Platform формирует и позволяет визуализировать данные:

- Динамика контролируемых показателей (температура, вибрация);
- Пересечение пороговых значений;
- Основные данные о работе датчиков (заряд, сигнал и др.).

Платформа также содержит:

- Редактор мнемосхем, позволяющий наносить на чертежи датчики;
- Администрирование датчиков и др.

Кейс ЗСНХ: Контроль перемерзаний

Оснащение трубопровода беспроводными датчиками контроля температуры позволит:

- контролировать температуру трубопровода из операторных,
- Обнаруживать отклонения от пороговых значений;

Предотвращать замерзание участков.

1. Штатная работа

трубопровода при низких температурах окружающей

температуры окружающей среды

участка

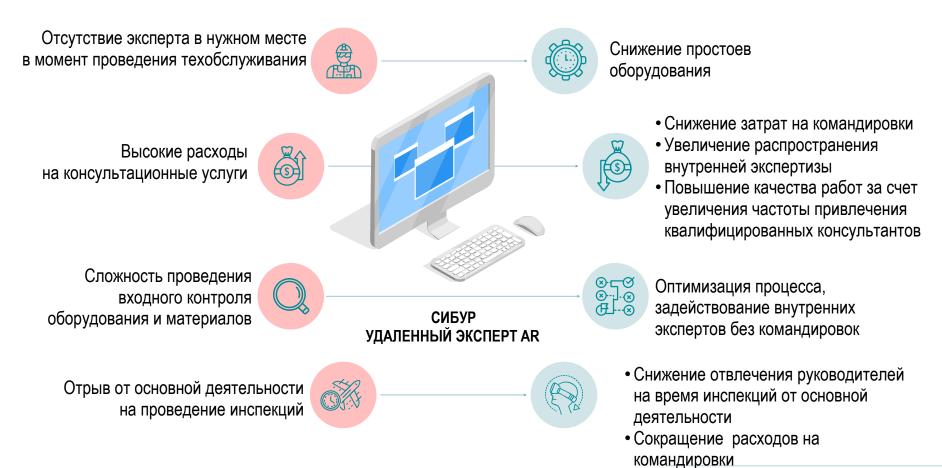
трубопровода непрерывной продувки из парового

7. Останов

млн.руб

БАЗОВЫЙ СЦЕНАРИЙ:

- УМД 45,2 млн.руб., 48 часа останова на переходе,
- ЕСЛИ работает 8 печей в нормальной нагрузке, 1 в ремонте\резерве без оперативной возможности её вывода, полный производственный план;
- ТОГДА возникает УМД в размере 45.2 млн.руб. на 48 часов на время продувки печи и полной её подготовки к эксплуатации (экстренное завершение ремонтных работ).

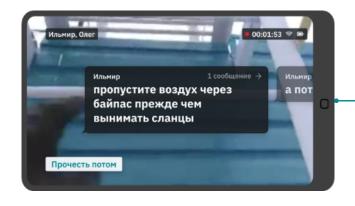


Nº9

	Бизнес-кейс	Опер.рычаг	Датчик	тнх	кстово	СИБТ/ЗСНХ	вск
20 Проекты 2018-20	Датчики температуры в чашах градирен	ВПР	Датчик температуры СИ-22 ВЕГА	√ Применимо Реализовано	Не применимо Реализовано через АСУТП	Не применимо Реализовано через АСУТП	Не применимо Реализовано через АСУТП
	Датчики температуры на узлах теплоспутников во взрывозащищен. исполнении	Чел-часы	Датчики температуры и собств.разраб, SIBUR EXT	Применимо Реализуется	Применимо Расчет НАRD-эффекта	√ Применимо Реализовано	Применимо SOFT-эффект (низкий)
	Датчики температуры и вибрации подшипников на электродвигателях во взрывозащищен. Исполнении	Чел-часы, ИППТ	Датчики температуры и вибрации собств разраб, SIBUR EXV/EXT	√ Применимо Реализуется	√ Применимо Реализуется	Применимо Датчик в разработке	Применимо Датчик в разработке
	Датчики вибрации и температуры на динамическом оборудовании во взрывозащищен. исполнении со спектральным анализом сигналов	Чел-часы, ВПР	OneProd, датчики вибрации от вендора	Применимо Выбран датчик без спектра		Применимо Расчет НАRD-эффекта	√ Применимо Эксперимент реализуется
	ИК Датчики на силовых ячейках контактных групп электроустановок	ВПР	Термосенсор, МИКРАН, ИК-датчики Y-Stream Node IR	Эффект низкий	Д иагностика	Диагностика	Эксперимент реализуется
	Датчики оборотов на секторных питателях порошковых силосов	ВПР	Rossma, датчики оборотов		Х Не применимо	Диагностика	Диагностика
	Датчики температуры на оборудовании узла дебутанизации	тппт	Датчики температуры собств.разраб, SIBUR EXT	Диагностика	Не применимо	√ Применимо Реализовано	Диагностика
	Датчики вибрации на подпиточных насосах второго каскада	ВПР	OneProd, датчики вибрации от вендора	√ Применимо Реализуется	Не применимо	Диагностика	Диагностика

Решаемые бизнес-задачи

Архитектура СИБУР «УДАЛЕННЫЙ ЭКСПЕРТ AR»



Приложение для AR-очков

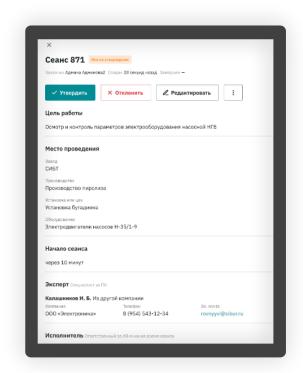
Интерфейс AR-очков

Аудиосвязь с экспертами

Передача звука к экспертам и получение указаний от них

Отображение сообщений и стикеров

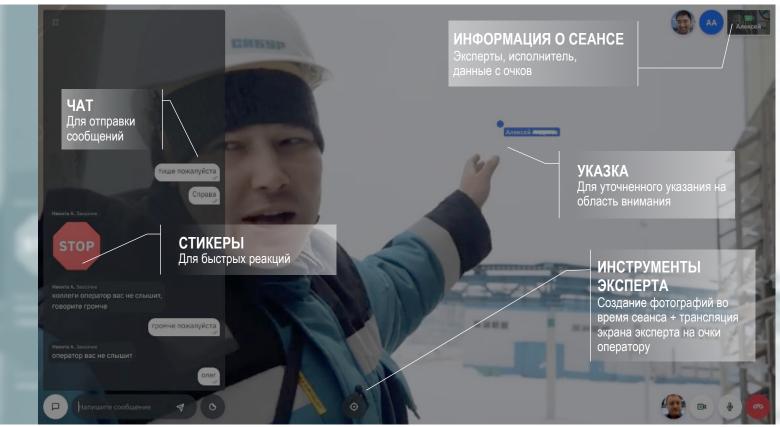
Текстовые подсказки, ключевые параметры установок


Указка

Сопровождение указаний эксперта

Системная информация

Время сеанса, заряд батареи, качество связи


Сервис заявок

- Сервис доступен только из ИТ-контура предприятия
- Работа web-интерфейса в современных браузерах (Edge, Chrome, Firefox, Safari)

Интерфейс эксперта

- Адаптивный битрейт видеопотока: от 500 Kbps до 4 Mbps
- Авторизация внутренних экспертов: login / pass корпоративной учетной записи (AD)
- Авторизация внешних экспертов: двухфакторная email+телефон
- Работа Web интерфейса в современных браузерах (Edge, Chrome, Firefox, Safari)

Карта применения «УДАЛЕННЫЙ ЭКСПЕРТ AR» в СИБУРе

Благодаря сервису эксперты доступны из любой точки мира без задержек и нарушений информационной безопасности предприятия

Кейс применения «Собака»

На установке ДГП СИБУР-Тобольска проводили работы по замене экранов реакторов дегидрирования пропана с последующим замером кольцевого зазора между корпусом реактора и экраном.

Работы по замерам выполнялись роботом, который был прислан поставщиком Aqseptence group (и назван нашими коллегами за сходство - Собакой)

С помощью Удаленного эксперта, специалисты Сибур:

- Научились работать с присланным роботом
- Провели ремонт робота
- Провели нужные работы

За счет применения Удаленного эксперта:

- Выполнили работы в срок в условиях карантина и невозможности приехат контрагента
- Сэкономили средства на оплате зарубежных специалистов и накладных расходов. В т.ч. избежали оплат карантинного простоя зарубежного специалиста на 14 дней. Суммарно эффект превысил 2 млн.р.

Внедрение СИБУР «УДАЛЕННЫЙ ЭКСПЕРТ AR»

Обследование Подготовка Внедрение Развертывание Анализ процессов Расчет объемов подключения внутренних и решения для пилота использования внешних экспертов Анализ объема и специфики Внесение изменений в сервисных контрактов Проведение лицензиаров переговоров с производственные поставщиками на процессы Оценка эффекта изменения применение процесса с задействованием инструмента Удаленного эксперта: скорость реагирования, Подписание доп. Подготовка снижение рисков, снижение Соглашений с инфраструктуры прямых расходов контрагентами Оценка качества связи в Утверждение методики местах проведения работ расчета и учета

от 2 месяцев

Исполнитель:

Технологический партнер Сибур ЗАО «КРОК инкорпорейтед»

Критерии, влияющие на стоимость и сроки

- Количество подключаемых устройств\экспертов
- Количество объектов диагностирования
- Готовность сетевой инфраструктуры и APM

Стоимость проекта

3+ млн руб.

эффектов 2 месяцев

от 1 месяца

Метрики приживаемости для автоматизации и контроля 2021

Показатели	Периодичность	Методика расчета	Источник данных	Значение показателя
Доля решений, принятых операторов на основании срабатываний видеоаналитики, в общем количестве зафиксированных происшествий, % (W3)	Ежемесячно	W3 = D / (A+B-C) * 100%	Расчетный показатель (по формуле)	Показатель показывает насколько эффективно система ИВН помогает операторам реагировать на происшествия
Уровень точности системы ИВН, % (W4)	Ежемесячно	W4 = (A-C) / (A+B) *100%	Расчетный показатель (по формуле)	Определение корректности работы детекторов
Количество происшествий, которые зафиксировала ИВН, ед (А)	Ежемесячно	Расчет не требуется - готовое значение в Дашборде	Дашборд	Показатель применяется в формуле для расчета показателей W3 и W4
Количество происшествий, которые ИВН не зафиксировала (происшествие было, но ИВН не загорелся), ед. (В)	Ежемесячно	Расчет не требуется - готовое значение при опросе	Устные отчеты от операторов	Показатель применяется в формуле для расчета показателей W3 и W4
Количество происшествий, зафиксированных ИВН ложно (происшествия не было, но ИВН загорелся), ед. (C)	Ежемесячно	Расчет не требуется - готовое значение при опросе	Устные отчеты от операторов	Показатель применяется в формуле для расчета показателей W3 и W4
Количество реакций операторов на зафиксированные происшествия ИВН (на основании анализа фотофиксаций), ед. (D)	Ежемесячно	Расчет не требуется - готовое значение при анализе фотофиксаций	-	Показатель применяется в формуле для расчета показателя W3
Среднее время устранения происшествия, мин (W5)	Ежемесячно	W5 = (t1 + t2 + + tn) / n где: t1 - время устранения определенного происшествия (в метриках нет) n - кол-во происшествий (в метриках нет)	Расчетный показатель (дашборд)	Сколько в среднем требуется времени на устранение происшествия
Максимальное время устранения происшествия, мин	Ежемесячно	-	Дашборд	Определение максимальной границы по времени устранения происшествия
Минимальное время устранения происшествия, мин	Ежемесячно	-	Дашборд	Определение минимальной границы по времени устранения происшествия

СИБУР

Название презентации. Мероприятие 24.03.2021

Модели AR-очков

RealWear HMT-1

БАЗОВЫЕ ПАРАМЕТРЫ:

Камера: 16 МР

Wi-Fi: 802.11 a/b/g/n/ac – 2.4GHz and 5GHz

Дисплей: 0,33" 24-bit color LCD

КОМПЛЕКТАЦИЯ:

HMT-1 (или HMT-1Z1) с предустановленной сменной батарея (3250/3400 mAh Li-lon)

Зарядное устройство

Кабель Micro-USB (или Кабель MicroUSB со встроенной защитой от зарядки «safety box»

Комплект креплений

Гарантия 1 / 2 / 3 года

RealWear HMT-1Z1 (взрывобезопасная модификация)

Требования к серверной емкости и сети

Пример конфигурации сервера в СИБУРе:

Имя сервера	vCore	RAM,GB	Disk Size, GB	OS
Reverse Proxy	4	4	50	Centos 7 x64
Медиасервер (транскодирование и мультиплексирование)	32	8	50	Centos 7 x64
Сигнальный сервер	4	4	50	Centos 7 x64
Сервер заявок	4	4	50	Centos 7 x64

- Поддерживаемое количество сеансов одновременно: 20, до 16 участников каждый
- Требования по connectivity при максимальной нагрузке: up to 1400 mbps (20 сессий x 16 клиентов x 4 Mbps x 10%)

